Abstract

We propose to begin a systematic exploration of the $p(\vec{e}, e'\vec{n})\pi^+$ and $p(\vec{e}, e'\vec{p})\pi^0$ reactions using the HARP detector by measuring selected in-plane and outof-plane response functions for W = 1.232 and W = 1.44 GeV, corresponding to the peaks of the delta and Roper resonances. The measurements will be performed with $\epsilon = 0.9$ so that HARP can be placed at large enough angles to take advantage of its large converter. At $Q^2 = 0.5 (\text{GeV/c})^2$ the large angular acceptance of HARP allows the entire angular distribution for pion electroproduction of the Δ to be sampled. The Roper measurements will be performed at $Q^2 = 0.23 \, (\text{GeV/c})^2$ to complement some of the $p(\vec{e}, e'\vec{p})\pi^0$ measurements planned in proposal 91-11 and will cover an angular range of ±40° in the center of mass. With HARP centered on q, angular distributions for R_{TT} , R_{TT}^{n} , and R_{LT}^{t} will be obtained from measurements made with the HARP converter in the vertical plane and angular distributions for R_{LT} , $R_{LT}^{\prime t}$, and R_{TT}^{tt} will be obtained using the HARP converter in the horizontal plane. Additional measurements with HARP in the vertical plane but centered on floor angles greater that $heta_q$ will provide slices through the opening-angle cone that can be used to determine other response functions through the azimuthal dependence of the reaction. These measurements also provide valuable internal consistency checks. In the Δ region many of the interference response functions are sensitive to the quadrupole deformation of the $N \to \Delta$ transition. In the Roper region, many of the response functions are quite sensitive to possible longitudinal excitation of the Roper resonance.

Requirements

Beam energy : 2.33 GeV Beam current : $100 \mu A$ Beam polarization : >60%Duty factor : $\sim 80\%$

Target : LH_2 , 1.0 g/cm² Detectors : HRS1 and HARP

Beam time : 984 hours